
Operating Systems
Lecture 8

Demand Paging

Prof. Mengwei Xu

10/29/24 Mengwei Xu @ BUPT 2

• Speed, Size, and Cost: take advantage of each level

Recap: Memory Hierarchy

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

1s 10,000,000s
 (10s ms)

Speed (ns): 10s-100s 100s

100s Gs-TsSize (bytes): Ks-Ms Ms-Gs

Tertiary
Storage
(Tape)

10,000,000,000s
 (10s sec)

Ts-Ps

10/29/24 Mengwei Xu @ BUPT 3

• Temporal locality (时间局部性): If at one point a particular memory
location is referenced, then it is likely that the same location will be
referenced again in the near future.

- To leverage: keep recently accessed data items closer to processor
• Spatial locality (空间局部性): if a particular storage location is

referenced at a particular time, then it is likely that nearby memory
locations will be referenced in the near future.

- Move contiguous blocks to the upper levels

Recap: Locality

10/29/24 Mengwei Xu @ BUPT 4

• Translation Lookaside Buffers (TLB,转换检测缓冲区): a special cache
within MMU that accelerates address translation

Recap: TLB as a Cache

……
add r1,r2
mult r1, 2
……

Virtual Address

……
0x01234567
0x89abcdef
……

Physical Address

Translation

• The time and spatial
locality.Who are they?

• Memory mapping is page-
aligned.

10/29/24 Mengwei Xu @ BUPT 5

• ATLB lookup goes through eachTLB entry

Recap: TLB Lookup

Virtual Address

Page # Offset

TLB
Virtual
Page #

Page
Frame #

Perm

=
=

=

Physical Address

Frame # Offset

= Full address translation
through page table lookup

Frame 1

Frame 2

Frame 3

..

Physical
Memory

10/29/24 Mengwei Xu @ BUPT 6

• (Mostly) Hardware traversed page tables:
- On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk

multiple levels)
q If PTE valid, hardware fills TLB and processor never knows
q If PTE marked as invalid, causes Page Fault, after which kernel decides what

to do afterwards

• Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE

q If PTE valid, fills TLB and returns from fault
q If PTE marked as invalid, internally calls Page Fault handler

Recap: TLB Miss

10/29/24 Mengwei Xu @ BUPT 7

Recap: Superpage

Virtual Address

Page # Offset

TLB
Virtual
Page #

Page
Frame #

Perm

=
=

=

Physical Address

Frame # Offset

=
Frame 1

Frame 2

Frame 3

..

Physical
Memory

Full address translation
through page table lookup

10/29/24 Mengwei Xu @ BUPT 8

• Consistency (一致性) is a common issue for each cache: the cache
must be always the same as the original data whenever the entries are
modified.

- Process context switch
- Permission reduction
- TLB shootdown

Recap: TLB Consistency

10/29/24 Mengwei Xu @ BUPT 9

• Fully associative (全关联、完全关联): each
address can be stored anywhere in the cache
table
• Direct mapped (直接映射): each address can

be stored in one location in the cache table
• N-way set associative (N路组关联): each

address can be stored in one of N cache sets

§ Tradeoffs: lookup speed and cache hit rate

Recap: Cache Lookup

Cache
Tag

Cache
Data

=
=

=

= Cache Miss

Valid

• Compare the cache tag on each cache line
• Example: Block Size=32B blocks

- We need Nx 27-bit comparators

10/29/24 Mengwei Xu @ BUPT 10

Recap: Fully Associative

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04
Cache Tag (27 bits long) Byte Select (5 bits)

31

=

=
=

=

=

Ex: 0x01

1

2

3

4

N

10/29/24 Mengwei Xu @ BUPT 11

• Example: 1 KB Direct Mapped Cache with 32B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

Recap: Direct Mapped

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 :31

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01
Byte Index

10/29/24 Mengwei Xu @ BUPT 12

• N-way Set Associative: N entries per Cache Index
- N direct mapped caches operates in parallel

Recap: Set Associative

Address

=

Hash

Cache Miss

=

Cache Miss

Cache Hit

Cache Hit

Tag Data

Tag Data

10/29/24 Mengwei Xu @ BUPT 13

• Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- Two tags in the set are compared to input in parallel
- Data is selected based on the tag result

Recap: Set Associative

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Compare Compare

Cache Block

A set

10/29/24 Mengwei Xu @ BUPT 14

• The cache is addressed through virtual or physical address?
- Note there are many levels of cache

• Every address access out of CPU is physical
- TheTLB miss cost is very high
- OverlappingTLB and 1st-level cache as they are both in CPU

Recap: Addressed Virtually or Physically?

CPU
2nd-
level
cache

3rd-
level
cache

Main Memory1st-
level
cache

MMU &
TLB

Virtual
address

10/29/24 Mengwei Xu @ BUPT 15

• Key idea:
- Offset in virtual address exactly covers the “cache index” and “byte select”
- Thus can select the cached byte(s) in parallel to perform address translation
- “Virtually indexed, physically tagged” (VIPT)

• Another option: virtually indexed, virtually tagged (VIVT)
- Tags in cache are virtual addresses
- Translation only happens on cache misses
- What’s the problems?

• L1 is mostlyVIPT, L2/L3 are mostly PIPT

Recap: Overlapping TLB and Cache

Recap: Putting Everything Together: Address Translation

Physical Address:
OffsetPhysical

Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Recap: Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Recap: Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag

10/29/24 Mengwei Xu @ BUPT 19

• Page Coloring or Cache Coloring (着色) technique helps reduce the
cache miss in an app

Recap: Page Coloring

Page No. Page Offset

Set Line OffsetTag

01163

2

Consider two consecutive pages used by an application:
• Their virtual set number must be different
• But their physical set number could be the same after translation (when the OS maps them to the

physical pages whose page numbers have the same last 2 bits). In such a case, two addresses with
the same offset within these two pages will in contention for the cache set.

Solutions
• Coloring the physical pages with the cache sets
• Maps the application pages to as many colors as possible (so less contention)

10/29/24 Mengwei Xu @ BUPT 20

• Memory as cache for secondary disk

Cache Hierarchy

CPU TLB Cache Memory Disk

10/29/24 Mengwei Xu @ BUPT 21

• Modern programs require a lot of physical memory, but they don’t use
all their memory all of the time

- 90-10 rule: programs spend 90% of their time in 10% of their code
- Wasteful to require all of user’s code to be in memory

Demand Paging (需求分页)

10/29/24 Mengwei Xu @ BUPT 22

• Modern programs require a lot of physical memory, but they don’t use
all their memory all of the time

- 90-10 rule: programs spend 90% of their time in 10% of their code
- Wasteful to require all of user’s code to be in memory

• Solution: use main memory as cache for disk
- “lazy” memory allocation

Demand Paging (需求分页)

10/29/24 Mengwei Xu @ BUPT 23

• Modern programs require a lot of physical memory, but they don’t use
all their memory all of the time

- 90-10 rule: programs spend 90% of their time in 10% of their code
- Wasteful to require all of user’s code to be in memory

• Solution: use main memory as cache for disk
- “lazy” memory allocation

• An illusion of infinite memory
- In-use virtual memory can be bigger than physical memory
- Combined memory of running processes much larger than physical memory

q More programs fit into memory, allowing more concurrency
- Principle: page table for transparent management

Demand Paging (需求分页)

10/29/24 Mengwei Xu @ BUPT 24

• What is block size?
- 1 page

• What is organization of this cache (i.e. direct-mapped, set-associative, fully-
associative)?
- Fully associative: arbitrary virtual ® physical mapping

• How do we find a page in the cache when look for it?
- First check TLB, then page-table traversal

• What is page replacement policy? (i.e. LRU, Random…)
- This requires more explanation… (kinda LRU)

• What happens on a miss?
- Go to lower level to fill miss (i.e. disk)

• What happens on a write? (write-through, write back)
- Write-back – need dirty bit!

Demand Paging as Cache

10/29/24 Mengwei Xu @ BUPT 25

• Memory-mapped Files (内存映射文件) is a segment of virtual
memory that has been assigned a direct byte-for-byte correlation with
some portion of a file or file-like resource

- A special case of demand paging
- A replacement for syscall read()/write()

Memory-mapped Files

mmap(): creates a new mapping in the virtual address space of the calling
process. The virtual address starts at addr with length length.The contents of a
file mapping are initialized using length bytes starting at offset offset in the file
(or other object) referred to by the file descriptor fd.
• If addr is NULL, the OS picks a location
• Return value: the address of new mapping

10/29/24 Mengwei Xu @ BUPT 26

Memory-mapped Files

https://biriukov.dev/docs/page-cache/5-more-about-mmap-file-access/

10/29/24 Mengwei Xu @ BUPT 27

• PROS
- Transparency – the program can use pointers to access those data
- Zero copy I/O – the OS just changes the page table entries without copying the

data into memory; read()/write() needs to copy the data twice (disk-kernel-user)
- Pipelining – the program can start executing as soon as the page table has been

set
- Interprocess communication – sharing becomes easy
- Large files – which pages shall be in memory? OS handles it for you

• CONS
- Frequent page faults
- A few more..

Memory-mapped Files

10/29/24 Mengwei Xu @ BUPT 28

• Use mmap when:
- Random Access: access data in a non-sequential manner
- Large Files: for very large files that may not fit into memory
- Multiple Processes: data sharing across processes
- Memory-Mapped I/O and automatic caching

• Instead, use read/write when:
- Small files
- Streaming data access
- Portability: not every OS has mmap!

When to use mmap

10/29/24 Mengwei Xu @ BUPT 29

• Set up mapping
- Initialize the page table entries and setting them to invalid

Implementation of Memory-mapped Files

P
R
/
W

U
/
S

P
W
Y

P
C
D

AD
P
A
T

GAvail
(9-11)Page Frame Base Address (12-31)

01234567891131

Available for system programmer’s use
Global page
Page Table Attribute Index
Dirty (PTE only): page has been modified recently
Accessed: page has been accessed recently
Cache disabled
Write-through
User/Supervisor
Read/Write
Present: valid or not

10/29/24 Mengwei Xu @ BUPT 30

• When program accesses an invalid address
1. [MMU]TLB miss; full page table lookup
2. [MMU + OS]Trapping into page fault handler
3. [OS] Convert virtual address to file offset
4. [OS] Allocate a new page frame in memory
5. [OS] Read data from disk to the memory (blocked)
6. [CPU] Disk interrupt when read completes
7. [OS] Updating page table by marking the entry as valid
8. [OS] Resume process
9. [MMU]TLB miss; full page table lookup
10. [MMU]TLB update

Implementation of Memory-mapped Files

10/29/24 Mengwei Xu @ BUPT 31

Implementation of Memory-mapped Files

10/29/24 Mengwei Xu @ BUPT 32

Before Page Fault (done by hardware)

Detailed Page Fault Process

ref: https://pages.cs.wisc.edu/~cao/cs537/lecture17.txt

Process executes a memory
load or store instruction, or
fetches an instruction

The address is first feed to
cache or instruction prefetch
buffer, if it is there, done;

If it is not there, the address is
feed to TLB, to try to find a
page translation entry for it
(note that the address is virtual
address);

If hit in TLB, check for R/W/E permissions.

If approved, take the physical page number,
concatenate it with the page offset, and send the
address to memory bus;

If not approved,
page fault!

If miss in TLB, MMU tries to find page table entry;

If page table entry found, the entry is put to TLB ---
some entry has to be replaced out of TLB, hardware-
decided replacement, random replacement;

If MMU can‘t find
page table entry or
permission not
satisfied, page fault!

10/29/24 Mengwei Xu @ BUPT 33

Handling Page Fault (done by hardware)

Detailed Page Fault Process

ref: https://pages.cs.wisc.edu/~cao/cs537/lecture17.txt

What kind of fault is it?

R/W/E permission denied: terminate
program and generate core-dump
file, or send a signal to the program

address not in the ranges of addresses that are
allowed to be referenced by the program:
terminate program and generate core-dump files

else, a legitimate page fault
(let's say the virtual page
that is to be faulted in is U)

First find a physical page
for it, say page P

If V has been modified since it is put in
main memory, writeV back to the disk

Change process Q's page table entry for page
V (which holds translations V->P) to invalid;

P already
used?

process Q has
V->P mapping

Y
N

Invalidate corresponding
TLB entry if necessary

Initialize the content of P

U in disk?

Read U from disk (during this time, the
process is blocked, and the CPU scheduler
puts some other process to run on CPU)

Set all bytes
in P to zero

Y

N

After P is initialized, change
the page table entry for U
to be U-->P, and set the
entry to be valid & clean;

After the interrupt processing,
the process will retry the
instruction that was not
finished due to the page fault

10/29/24 Mengwei Xu @ BUPT 34

• How does OS know which pages have been modified?
- Assuming every page has been modified is correct but inefficient

• The hardware tracks it with a dirty bit in page table entry
- Initialized to 0
- Set to 1 whenever there is a store instruction for the page

• TheTLB also has a dirty bit
• Unix has a background thread to clean pages when it’s too full

The Dirty Bit

10/29/24 Mengwei Xu @ BUPT 35

• If there is an empty page, use it
• If there is no empty page

- Select a page to evict
q Need a lightweight policy

- Find page table entries that point to the evicted page
q Core map – an array that maps physical page frames back to the table entries

- Set page table entry to invalid
qTLB shootdown is needed.Why?

- Copy back any changes to the evicted page
qWrite back
qThe same for application exit
q Dirty bit

Allocating New Page Frame

10/29/24 Mengwei Xu @ BUPT 36

• Why do we care about Replacement Policy?
- The cost of being wrong is high: must go to disk
- Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
- Throw out oldest page. Let every page live in memory for same amount of time.
- Bad – throws out heavily used pages instead of infrequently used

• MIN (Minimum):
- Replace page that won’t be used for the longest time
- Great, but can’t really know future…
- Makes good comparison case, however

• RANDOM:
- Pick random page for every replacement
- Typical solution for TLB’s. Simple hardware
- Pretty unpredictable – makes it hard to make real-time guarantees

Page Eviction Policy

10/29/24 Mengwei Xu @ BUPT 37

• LRU (Least Recently Used):
- Replace page that hasn’t been used for the longest time
- Programs have locality, so if something not used for a while, unlikely to be used

in the near future.
• How to implement LRU? Use a list!

- On each use, remove page from list and place at head
- LRU page is at tail

• Problems with this scheme for paging?
- Need to know immediately when each page is used, so we can change its

position in list
- Many instructions for each hardware access

• In practice, people approximate LRU

Page Eviction Policy

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

10/29/24 Mengwei Xu @ BUPT 38

• Why we can implement LRU forTLB entry replacement, but not
demand paging replacement?

Page Eviction Policy

10/29/24 Mengwei Xu @ BUPT 39

• Why we can implement LRU forTLB entry replacement, but not
demand paging replacement?

- TLB is purely handled in hardware (MMU)
- TLB has fewer entries (typically 16-512)

Page Eviction Policy

10/29/24 Mengwei Xu @ BUPT 40

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

2

4

7

10

3

5

68

9

11

12

Page reference stream:

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 41

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

2

4

7

10

3

5

68

9

11

12

Page reference stream: 1

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 42

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

2

4

7

10

3

5

68

9

11

12

Page reference stream: 1

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 43

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

2

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 44

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

2

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 45

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

2

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 46

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

2

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 47

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

2

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 48

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 49

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20 10

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 50

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20 10

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 51

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20 10 25

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 52

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20 10 25

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 53

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

4

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20 10 25

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 54

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

25

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20 10 25

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 55

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

25

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20 10 25 2

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 56

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

25

7

10

3

5

68

9

11

12

Page reference stream: 1 3 1 20 10 25 2

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 57

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

25

7

10

3

2

68

9

11

12

Page reference stream: 1 3 1 20 10 25 2

Use bit = 0

Use bit = 1

10/29/24 Mengwei Xu @ BUPT 58

• Clocking algorithm: approximating LRU
• Implementation with the use bit

- Initialized to 0 in page table
- Set to 1 whenever there is a page access

• When we need to evict a page, we look
at the page under the hand:

- If its use bit = 1, clear it and move the hand,
repeat;

- If its use bit = 0, evict it

Page Eviction Policy

1

20

25

7

10

3

2

68

9

11

12

Page reference stream: 1 3 1 20 10 25 2

Use bit = 0

Use bit = 1

What if hand moving slowly? Good sign or bad sign?
What if hand moving quickly? Good sign or bad sign?

10/29/24 Mengwei Xu @ BUPT 59

• Nth chance algorithm: Give page N chances
- OS keeps counter per page: # sweeps
- On page fault, OS checks use bit:

q 1 ® clear use and also clear counter (used in last sweep)
q 0 ® increment counter; if count=N, replace page

- Means that clock hand has to sweep by N times without page being used before page is replaced
• How do we pick N?

- Why pick large N? Better approximation to LRU
q If N ~ 1K, really good approximation

- Why pick small N? More efficient
q Otherwise might have to look a long way to find free page

• What about dirty pages?
- Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before replacing?
- Common approach:

q Clean pages, use N=1
q Dirty pages, use N=2 (and write back to disk when N=1)

Nth Chance Version of Clock Algorithm

10/29/24 Mengwei Xu @ BUPT 60

• Which bits of a PTE entry are useful to us?
- Use: set when page is referenced; cleared by clock algorithm
- Modified: set when page is modified, cleared when page written to disk
- Valid: ok for program to reference this page
- Read-only: ok for program to read page, but not modify

qFor example for catching modifications to code pages!

• Do we really need hardware-supported “modified” bit?
- No. Can emulate it (BSD Unix) using read-only bit

q Initially, mark all pages as read-only, even data pages
q On write, trap to OS. OS sets software “modified” bit, and marks page as read-write.
qWhenever page comes back in from disk, mark read-only

Details of Clock Algorithms

10/29/24 Mengwei Xu @ BUPT 61

• How do we allocate memory among different processes?
- Does every process get the same fraction of memory? Different fractions?
- Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
- Want to make sure that all processes that are loaded into memory can make

forward progress
- Example: IBM 370 – 6 pages to handle SS MOVE instruction:

q instruction is 6 bytes, might span 2 pages
q 2 pages to handle from
q 2 pages to handle to

• Possible Replacement Scopes:
- Global replacement – process selects replacement frame from set of all frames; one

process can take a frame from another
- Local replacement – each process selects from only its own set of allocated frames

Allocation of Page Frames

10/29/24 Mengwei Xu @ BUPT 62

• Self-paging (自分页): ach process is responsible for managing its own
page faults and memory allocation, rather than relying on a global
operating system-wide policy.

• Global page management
- each process/user is assigned its fair share of page frames using max-min

scheduling algorithm
- when memory is full, the page eviction happens to the process with the most

allocated memory.
q Avoid malicious attackers that wants as much as resources

Allocation of Page Frames

10/29/24 Mengwei Xu @ BUPT 63

• To support demand paging, what do CPU/OS contribute?
- CPU: memory management (MMU), a few bits in page table entry, etc
- OS: page table manipulation, eviction strategy, page fault handler, etc

Summary

10/29/24 Mengwei Xu @ BUPT 64

• How does Android (or other mobile OSes) handle memory inefficiency,
e.g., too many apps opened?

- Strategy #1: swapping (demand paging)
- (primary) Strategy #2: low memory killer (LMK)

q vs. out-of-memory (OOM) killer in Linux
- Android prefers the 2nd one, because:

q Flash memory has limited write endurance.
q Disk I/O is generally slower and consumes more power compared to RAM access.
q Responsive time is more important on mobile apps

Advanced: Android Memory Management

